A-B-imprimitivity bimodule frames

نویسنده

چکیده مقاله:

Frames in Hilbert bimodules are a special case of frames in Hilbert C*-modules. The paper considers A-frames and B-frames and their relationship in a Hilbert A-B-imprimitivity bimodule. Also, it is given that every frame in Hilbert spaces or Hilbert C*-modules is a semi-tight frame. A relation between A-frames and K(H_B)-frames is obtained in a Hilbert A-B-imprimitivity bimodule. Moreover, the last part of the paper investigates dual of an A-frame and a B-frame and presents a common property for all duals of a frame in a Hilbert A-B-imprimitivity bimodule.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The higher relation bimodule

Given a finite dimensional algebra A of finite global dimension, we consider the trivial extension of A by the A − A-bimodule ⊕i≥2 Ext 2 A(DA,A), which we call the higher relation bimodule. We first give a recipe allowing to construct the quiver of this trivial extension in case A is a string algebra and then apply it to prove that, if A is gentle, then the tensor algebra of the higher relation...

متن کامل

Rep#1: Deformations of a bimodule algebra

Definition 3. Let B be a ring. Then, we denote by B [[t]] the ring of formal power series over B in the indeterminate t, where t is supposed to commute with every element of B. Formally, this means that we define B [[t]] as the ring of all sequences (b0, b1, b2, ...) ∈ BN (where N means the set {0, 1, 2, ...}), with addition defined by (b0, b1, b2, ...) + (b ′ 0, b ′ 1, b ′ 2, ...) = (b0 + b ′ ...

متن کامل

A Mackey Imprimitivity Theory for Algebraic Groups *

Let G be an affine algebraic group over an algebraically closed field k and let H be a closed subgroup of G. If V is a rational H-module (a comodule for the coordinate ring of H) there is a now well-known notion of an induced module VI G for G, defined as the space Morph/~(G, V) of all H-equivariant morphisms from G to a finite dimensional subspace of V, with obvious G-action. The question aris...

متن کامل

Equivariant Maps and Bimodule Projections

We construct a counterexample to Solel’s[25] conjecture that the range of any contractive, idempotent, MASA bimodule map on B(H) is necessarily a ternary subalgebra. Our construction reduces this problem to an analogous problem about the ranges of idempotent maps that are equivariant with respect to a group action. Such maps are important to understand Hamana’s theory of G-injective operator sp...

متن کامل

Generalized Frames for B(H, K)

Frames play significant role in various areas of science and engineering. Motivated by the work of Chander Shekhar, S. K. Kaushik and Abas Askarizadeh, Mohammad Ali Dehghan, we introduce the concepts of $K$-frames for $B(mathcal{H, K})$ and  we establish some result. Also, we consider the relationships between $K$-Frames and $K$-Operator Frames for $B(mathcal{H})$.

متن کامل

Injectivity of the Predual Bimodule

Let A be a dual Banach algebra with predual A∗ and consider the following assertions: (A) A is Connes-amenable; (B) A has a normal, virtual diagonal; (C) A∗ is an injective A-bimodule. For general A, all that is known is that (B) implies (A) whereas, for von Neumann algebras, (A), (B), and (C) are equivalent. We show that (C) always implies (B) whereas the converse is false for A = M(G) where G...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 1

صفحات  33- 41

تاریخ انتشار 2017-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023